Factorial Hidden Markov Models for Gait Recognition
نویسندگان
چکیده
Gait recognition is an effective approach for human identification at a distance. During the last decade, the theory of hidden Markov models (HMMs) has been used successfully in the field of gait recognition. However the potentials of some new HMM extensions still need to be exploited. In this paper, a novel alternative gait modeling approach based on Factorial Hidden Markov Models (FHMMs) is proposed. FHMMs are of a multiple layer structure and provide an interesting alternative to combining several features without the need of collapse them into a single augmented feature. We extracted irrelated features for different layers and iteratively trained its parameters through the Expectation Maximization (EM) algorithm and Viterbi algorithm. The exact Forward-Backward algorithm is used in the E-step of EM algorithm. The performances of the proposed FHMM-based gait recognition method are evaluated using the CMU MoBo database and compared with that of HMMs based methods.
منابع مشابه
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Human Gait Classi cation Based on Hidden
This paper describes a system for automatic gait analysis. In most clinical systems markers are used to determine the trajectories. We use a system for object recognition without segmentation to track body parts. From these trajectories periodic features are extracted. Another method to determine feature vectors is based on the optical ow computed by monotony operators. Both methods do not pres...
متن کاملDepth video-based gait recognition for smart home using local directional pattern features and hidden Markov model
Gait recognition at smart home is considered as a primary function of the smart system nowadays. The significance of gait recognition is high especially for the elderly as gait is one of the basic activities to promote and preserve their health. In this work, a novel method was proposed for human gait recognition by processing depth videos from a depth camera. The gait recognition method utiliz...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کامل